Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Aβ in Alzheimer’s disease

نویسندگان

  • Joe Atherton
  • Ksenia Kurbatskaya
  • Marie Bondulich
  • Cara L Croft
  • Claire J Garwood
  • Resham Chhabra
  • Selina Wray
  • Andreas Jeromin
  • Diane P Hanger
  • Wendy Noble
چکیده

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β-amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase-3, activity is a prominent feature of AD brain. In addition, we observe increased calpain-mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1-42. We also show that exposure of primary cortical neurons to oligomeric Aβ1-42 results in calpain-dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

Thymoquinone recovers learning function in a rat model of Alzheimer’s disease

Objective: Alzheimer's disease is a neurodegenerative disorder characterized by accumulation of amyloid beta in the hippocampus. In recent decades, herbal medicine has been widely used to treat many neurodegenerative disorders,as in comparison to conventional drugs, herbal remedies exert minimal side effects. Here, the effects of thymoquinone, as the main active component of Nigella sativa, on ...

متن کامل

Tacrine-Flavonoid Quercetin Hybride as a MTDL Ligand against Alzheimer’s Disease with Metal Chelating and AChE, BChE, AChE-induced Aβ Aggregation Inhibition Properties: A Computational Study

AChE is an enzyme that is predominate in a healthy brain, while BChE is considered to play a minor role in regulating the levels of ACh (memory molecule) in the brain. In addition to setting the ACh level, these two enzymes also facilitate Aβ aggregation by forming stable complexes and participate in the abnormal phosphorylation of the tau protein, which also contribute to the development of Al...

متن کامل

Calpain and mitochondria in ischemia/reperfusion injury.

Studies of ischemia/reperfusion (I/R) injury and preconditioning have shown that ion homeostasis, particularly calcium homeostasis, is critical to limiting tissue damage. However, the relationship between ion homeostasis and specific cell death pathways has not been investigated in the context of I/R. Previously we reported that calpain cleaved Bid in the absence of detectable caspase activatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014